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On the Convergence Behavior of Continued 
Fractions with Real Elements* 

By Walter Gautschi 

Abstract. We define the notion of transient (geometric) convergence rate for infinite series and 
continued fractions. For a class of continued fractions with real elements we prove a 
monotonicity property for such convergence rates which helps explain the effectiveness of 
certain continued fractions known to converge "only" sublinearly. This is illustrated in the 
case of Legendre's continued fraction for the incomplete gamma function. 

1. Introduction. Continued fractions, as is well known, can be viewed in terms of 
infinite series. To describe the convergence behavior of a series it is useful to 
consider the notion of transient (geometric) convergence rate. Given a convergent 
series Y? t' the nth transient convergence rate is the quantity , Pn n = 1, 2,..., 
where tn = pntn -l (assuming tn,- l# 0). If hM n -o I Pn r, 0 s r s 1, convergence 
is linear (geometric) with convergence rate r, if 0 < r < 1, superlinear, if r = 0, and 
sublinear if r = 1. It is important to note, however, that these concepts are asymp- 
totic in nature, hence not necessarily relevant for numerical (finite!) computation. 
Thus, a series need not be dismissed as useless, simply because it converges only 
sublinearly. The approach of I Pn I to the limit 1 indeed may be so slow that the series 
has "converged to machine precision" long before I Pn I reaches the neighborhood of 
1. For this reason, convergence of a series ought to be judged on the basis of the 
complete sequence {pn} of convergence rates, and not just on the basis of asymptotic 
properties of pn. In this connection, properties of monotone behavior significantly 
add to the understanding of the quality of convergence. 

The purpose of this note is to prove a criterion for the sequence {l Pn I} to be 
(ultimately) monotonically increasing, in the case where the partial sums of the series 
are convergents of a continued fraction with real elements. We illustrate the result 
with Legendre's continued fraction for the incomplete gamma function, which, 
though sublinearly convergent, provides an effective tool of numerical computation. 

2. Continued Fractions and Infinite Series. We consider continued fractions of the 
form 

(2.1) C= al a2+ 

where, for some integer ko 2 1, 

ak> O for I s k - ko-1, 
(2.2) ak< O and ak l 4 for k 2 ko0. 
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It can be seen from Worpitzky's theorem (Henrici [3, p. 506]) that the tail of the 
continued fraction (2.1) beginning with the element ako0 hence also the complete 
continued fraction, converges. The infinite series 

00 

(2 .3) s= tk ( to=1) 
k=O 

is equivalent to the continued fraction (2.1) if its nth partial sum 
n-I 

(2.4) Sn = I + :E tk 
k= I 

is equal to the n th convergent of c, for each n = 1, 2, 3,. According to Euler, 

(2.5) si 1, Sk+1 Sk + tk, k = 1,2,3... 

where 

Po 0, to= 1, 

-ak(l + Pk-1) 

(2.6) Pk 1 + ak(l + Pk-1) k 1,2, 3. 

tk Pktk-IJ 

This represents a convenient algorithm for evaluating the continued fraction c, and 
is also useful for analyzing qualitative properties of convergence. Note indeed that 
the quantities pn in (2.6) yield the transient convergence rates I Pn I of the series (2.3). 

Slightly more convenient for analytical purposes are the quantities ok = 1 + Pk, 

which satisfy 

(2.7) a0 1, Uk ? k = 1, 2,3,. (2.7) 1~~~~~ + akok-I 

3. Convergence Behavior. Some first insights into the convergence behavior of the 
continued fraction (2.1) can be gained from the following lemma. 

LEMMA 3.1. If the partial numerators ak in (2.1) satisfy (2.2), then the quantities ok in 

(2.7) satisfy 

(3.1) <ak< 1 forl ?k kok-l, 

and 

(3.2) 1 ak k-k + 3 for kko0 

Proof. The inequalities (3.1) follow immediately from the positivity of ak and (2.7). 
To prove (3.2), we use induction. Since - ? : ak < 0 and 0 < kl s 1, we have 
1 < Oko < 4/3, so that (3.2) is true for k = ko. Assuming its truth for some k > ko 
we obtain 

1 1 - ~~~~~2(k- ko +3) 
k+1 +ak?lak 1 2(k-ko + 2) k-ko + 4 

4 k-ko + 3 

which is (3.2) with k replaced by k + 1. 0 
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Lemma 3.1, in particular, implies 0 < ak < 2, hence -1<Pk<l, for allk . 
The series (2.3), therefore, has terms that are strictly decreasing in absolute value. 
Furthermore, by (3.1) and (3.2), 

(3.3) -I < Pk < 0 for I < k - ko-1, and 0 < Pk < 1 for k ko, 
so that the series initially (if ko > 1) behaves like an alternating series and subse- 
quently turns into a monotone series. 

A more detailed description of convergence is provided by the following theorem. 

THEOREM 3.1. If the partial numerators ak in (2.1) satisfy (2.2), and in addition 
- a4 aS a ak < O for k kO ,then 

(3.4) -1 < Pk < 0 for I s k < ko-1 and Pk+ I > Pk > 0 for k 2 ko. 
In particular, 

1- l+4a 
(3.5) lim Pk = P, P = 

k oc 1+ V1 + 4a 

where a = limk 00 ak; the continued fraction (2.1) converges linearly, with convergence 
rate p, if a > - 4, and sublinearly if a - 

Proof. The first inequalities in (3.4) have already been noted in (3.3). The others 
are equivalent to ak+? > ak > 1 for k 2 ko. Since ak > 1, by (3.2), it suffices to 
prove 

(3.6) ak?+ > ak for k > ko 

We first show 

(3.7) akl < for k > k 

This is true for k= ko, since by (3.1) (and (2.7), if ko = 1) Uko I 1, while the 
expression on the right of (3.7) is greater than 1. Using induction, assume that (3.7) 
holds for some k 2 ko. Then 

cjk- 
2g -I ak 

(3.8) lIa + a 

1- 21ak+1 
1 + l/141ak?1l 

where in the last inequality we have used I ak+ I I ak I . Now observe that, for any 
a 14, 

1 1 + rl -4a 

1 - 2(x 1 + /1 -4a - 2a 
1 + rl -4a 

I1--(I1-4a) 2 

- (I - 4a) - 2a(l - rl -4a) I + rl -4a 
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Using this in (3.8), with a = I ak+1 I yields (3.7) with k replaced by k + 1, and thus 
establishes (3.7) for all k : ko. 

Now (3.6), in view of (2.7), is equivalent to 

I?ak?lak >ok for k > ko, 

which in turn, since 1 + ak+ lak > 0 and ak?+ < 0 for k > k0, is equivalent to 

a 
2 

- ak + 1 >0. 

The quadratic function I ak +1 t2 - t + 1 is convex and has two real zeros t1 k,+ < 

t2, k+ , the smaller of which is 

2 
tl,k+ 

I 
1+ l -4 lak+I 

By (3.7), ak <t k?1' hence I a o - 2 + 1 > 0, which implies ak?+ > (Jk This 
proves (3.6). 

Since the sequence {ak} is monotonically decreasing for k > ko, and bounded 
below by - I, the limit limk ak = a exists, and - l - a < , since ak0 < 0. 
Similarly, limkpk =p, 0 <p s 1, and lim k a,oo = a with a = 1 + p. Going to 
the limit k oc in (2.7) then gives 

1 _ 2 
a= 

a= -4- 1l+ aa '1? l+4a 

Since a s 2 and - l s a < 0, the minus sign in the last equation for a cannot hold 
(unless a - 4), and we conclude that 

2 1- l?+4a 
a = , p =a-1l= 

1 + l +4a 1 + +4a 

which is (3.5). The last statement of the theorem is an immediate consequence of 
(3.5). This completes the proof of Theorem 3.1. 

4. Truncation. In practice, the continued fraction (2.1) is evaluated by carrying out 
(2.5) and (2.6) for k = 1, 2,. . ., n and taking Sn+ 1 to approximate the value of s (or c) 
of the continued fraction. It is important, then, to be able to choose n in such a way 
that Sn+ I approximates s to any prescribed accuracy. 

Assuming first ko = 1, hence 0 < Pk < 1 by (3.3) and 0 < tk < 1, it follows from a 
result of Merkes [4, Eq. (12)] that 

(4.1) 11s - Sn+ +< p tn. 

This suggests the following stopping rule: Given a prescribed (relative) accuracy e, 
stop the recursion (2.6) at the first integer k = n for which 

(4.2) (1 + p)tn (1 - Pn)Sn+le. 

By (4.1), this implies I s-Sn+ I I < Sn + c, hence 

I S Sn+ I | I- Sn+I ? 

s + ISfl1S ~ 5n 
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from which I s-s?+I I<se + I s,+I-s I ? that is, 

(4.3) s- Sn+?1 |s e 

Our stopping rule therefore achieves the desired accuracy, at least asymptotically for 
E -- 0. 

To avail oneself of this simple stopping rule, when ko > 1, one ought to first 
evaluate the " tail" 

(4.4) Cko 1+ 1- * 1 

of the continued fraction (2.1), to which Merkes' result applies, and then compute 

(4.5) l for k = ko- 1, ko - 2,. , 1, 1 + akCk?1I 

to get the complete continued fraction c = cl. Since Ck. > 0 and ak > 0 for k < ko 
the computation in (4.5) involves the addition of positive numbers and division, 
hence only numerically stable operations. 

5. An Example. Theorem 3.1 is applicable to Legendre's continued fraction for the 
incomplete gamma function, 

_ 1 
al a2 

(x-a + l)x-aexF(a, x) = 1 1+ 

(5.1) akk(a -k)k=123., 
ak 

= 

(x - a + 2k - 1)(x - a + 2k + 1)' k = 1 2 3 . 

which is used in [1, p. 475], [2] to compute the incomplete gamma function in the 
domain D: x 2 1.5, -X < a < x + 4. Assuming a not a positive integer (otherwise, 
the continued fraction (5.1) would terminate and our assumption (2.2) would be 
violated), we have for (x, a) E D 

fI if a < 1, 
(5.2) ko I + [a] if a > 1. 

If k > ko, the condition I ak 1 < 4 is equivalent to (x - a)2 + 4kx > 1, hence satis- 
fied if x > 4 (since k > 1). An elementary calculation furthermore shows that 

I ak+l 1>1 ak I for k > ko whenever x > 4. It follows, in particular, that all assump- 
tions of Theorem 3.1 are satisfied when (x, a) E D. Since clearly a = limk-O ak 

- 4, we are in a case of sublinear convergence. (This is also noted by Henrici [3, p. 
629] by way of a different analysis.) Nevertheless, the continued fraction is known to 
be quite useful as a computational tool, at least in a domain such as D. The reason 
for this is readily understood on the basis of Theorem 3.1: Although the transient 
convergence rates Pk eventually increase monotonically to 1, the limit is approached 
quite slowly. We can see this from Table 5.1 which, in the case of the continued 
fraction (4.4), and for selected x and a, displays the values of 

nV-max(k:IPkI---<~4-) and = t v=1,2,3. 
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TABLE 5.1 

Convergence behavior of the continued fraction (5.1) 

(Numbers in parentheses indicate decimal exponents.) 

X a n1 El n2 E2 n3 ?3 

1.5 1.75 3 1.9(-3) 13 2.9(-7) 75 6.7(-18) 

.875 3 9.2(-4) 13 1.2(-7) 75 2.7(-18) 

0.0 3 6.8(-3) 13 1.4(-6) 75 3.7(-17) 

-3.5 3 7.3(-3) 13 1.4(-6) 75 3.5(-17) 

-7.0 4 8.9(-4) 15 5.8(-8) 79 5.5(-19) 

5.0 5.25 9 1.9(-8) 41 5.4(-21) 243 2.9(-56) 

2.625 10 1.0(-9) 41 7.3(-22) 243 3.0(-57) 

0.0 10 9.8(-10) 42 2.9(-22) 244 1.6(-57) 

-10.5 9 1.9(-8) 42 1.6(-21) 244 8.5(-57) 

-21.0 12 2.7(-11) 48 1.2(-25) 254 8.8(-62) 

10.0 10.25 18 1.1(-16) 81 1.2(-41) 483 3.0(-112) 

5.125 18 8.6(-17) 81 7.1(-42) 483 1.5(-112) 

0.0 20 8.0(-20) 83 8.1(-45) 485 1.9(-115) 

-20.5 19 1.7(-17) 83 6.9(-43) 485 1.6(-113) 

-41.0 24 1.5(-22) 95 5.0(-51) 504 4.2(-123) 

20.0 20.25 36 3.0(-33) 161 4.8(-83) 963 2.9(-224) 

10.125 36 1.2(-33) 162 5.2(-84) 964 3.1(-225) 

0.0 40 2.9(-40) 165 3.4(-90) 967 1.6(-231) 

-40.5 38 4.3(-35) 165 8.8(-86) 968 3.4(-227) 

-81.0 48 3.1(-45) 188 1.2(-101) 1004 6.8(-246) 

Note that by virtue of (4.1), and the fact that 1 < s = Cko s 2 (cf. [3, Theorem 

12.3c]), 
s - 

Sn,, ? 

(5.3) | I s - sn+| < E, v 1, 2, 3. 

Thus, for example, if x = 5, a = 0, by the time the transient convergence rate has 

risen to 4, the continued fraction has already converged to within a (relative) error 

of about 3 X 10-22. 
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